Восемь правил эффективности - Страница 64


К оглавлению

64

«Вероятности ближе всего к предсказаниям, – пояснил Говард. – Нужны силы, чтобы жить с мыслью о том, что может произойти».

Глава 3

В конце 1990-х годов профессор когнитивистики из Массачусетского технологического института по имени Джошуа Тененбаум приступил к масштабным исследованиям: ученый хотел знать, каким образом обыкновенные люди делают повседневные прогнозы. Каждый день мы сталкиваемся с десятками вопросов, ответить на которые невозможно без той или иной степени прогнозирования. Допустим, нам нужно прикинуть, как долго продлится собрание, или выбрать маршрут с минимальным количеством пробок, или решить, куда поехать отдыхать всей семьей: на океан или в «Диснейленд». Размышляя о подобном, мы делаем прогнозы, приписывая вероятности различным исходам. Возможно, мы этого не осознаем, но мы мыслим сквозь призму вероятностей. Как наш мозг это делает?

Специальностью Тененбаума была вычислительная когнитивистика – в частности, сходства в процессах обработки информации, свойственных компьютеру и человеку. По сути, компьютер представляет собой детерминированный автомат. Он, конечно, может спрогнозировать, что предпочтет ваша семья (пляж или «Диснейленд»), но только при одном условии: если вы дадите ему четкую формулу для сравнения достоинств пляжных забав и парков развлечений. Человек, напротив, может принять решение даже в том случае, если он никогда раньше не ездил ни на океан, ни в Волшебное Королевство. Основываясь на предыдущем опыте, наш мозг, скорее всего, сделает примерно такой вывод: раз дети вечно ноют «на лоне природы» и обожают смотреть мультфильмы, все получат больше удовольствия от встречи с Микки и Гуфи.

«Каким же образом наш мозг извлекает столь многое из столь малого? – пишет Тененбаум в статье, опубликованной в журнале „Science“ в 2011 году. – Любой родитель знает, и ученые это подтвердили, что типичные двухлетние дети понимают, как правильно употреблять новое слово, например „лошадь“ или „расческа“, увидев всего несколько примеров». Для двухлетнего ребенка лошадь и щетка для волос имеют много общего. На картинках у обеих длинное тело с серией прямых линий, торчащих наружу – в одном случае это ноги, во втором – щетинки. И те, и другие бывают разных цветов. И все же, несмотря на то, что ребенок, возможно, видел только одну фотографию лошади и пользовался только одной расческой, он может быстро понять разницу между этими словами.

Компьютер, напротив, нуждается в подробных инструкциях, когда следует употреблять «лошадь», а когда «расческа». Ему требуется особая программа, в которой будет четко оговорено, что четыре ноги увеличивают шансы на лошадиность, а сто щетинок повышают вероятность расчески. Ребенок производит такие расчеты раньше, чем строит предложения. «С точки зрения оперирования сенсорной информацией это подвиг, – писал Тененбаум. – Как ребенок улавливает границы этих подмножеств, увидев только один или несколько примеров?»

Другими словами, почему мы так хорошо умеем прогнозировать определенные типы событий – и, таким образом, принимать оптимальные решения, – если мы практически ничего не знаем о всех потенциальных обстоятельствах?

Чтобы ответить на этот вопрос, Тененбаум и его коллега Томас Гриффитс провели любопытный эксперимент. Они прочесывали интернет, собирая данные по различным категориям предсказуемых событий, – например, сколько денег соберет фильм в прокате, какова продолжительность жизни среднего человека, сколько времени печется пирог. Интерес к такого рода вопросам объяснялся просто: если для каждого из них построить свой график, то он будет иметь строго определенный вид. Кассовые сборы, например, обычно подчиняются базовому правилу: каждый год выпускают несколько блокбастеров, которые приносят огромную прибыль, и множество фильмов, которые оказываются убыточными.

В математике это называется «степенным распределением». Если доходы от всех кинофильмов, выпущенных в том или ином году, представить на одном графике, то он будет выглядеть так:


Сборы в прокате


Графики других типов событий выглядят иначе. Возьмем продолжительность жизни. Шансы умереть достаточно высоки в момент рождения – некоторые младенцы погибают, едва появившись на свет, – но если ребенок благополучно прожил первый год, то, скорее всего, он проживет еще несколько десятков лет. После 40 лет шансы умереть начинают повышаться. После 50 лет вероятность смерти резко возрастает с каждым годом, достигая максимума примерно в 82 года. Это и есть средний возраст смерти.

Продолжительность жизни придерживается нормальной, или гауссовой, кривой распределения. График выглядит так:


Продолжительность жизни


Большинство людей интуитивно понимают: для прогнозирования различных видов событий нужны разные виды рассуждений. Мы знаем, что кассовые сборы и продолжительность жизни требуют разных типов оценок, даже если нам ничего не известно о медицинской статистике или тенденциях в индустрии развлечений. Тененбаум и Гриффитс хотели выяснить, откуда берутся эти интуитивные знания. Поэтому они выбрали события с четкими закономерностями: от кассовых сборов и продолжительности жизни до средней длины стихотворений, продолжительности карьеры конгрессмена (которая придерживается распределения Эрланга) и времени пребывания пирога в духовке (которое лишено четко выраженных закономерностей).

64